ln(1/x)+ln(2x^3)=ln(8)

Simple and best practice solution for ln(1/x)+ln(2x^3)=ln(8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ln(1/x)+ln(2x^3)=ln(8) equation:


D( x )

x = 0

1/x <= 0

2*x^3 <= 0

x = 0

x = 0

1/x <= 0

1/x <= 0

1*x^-1 <= 0

1*x^-1 <= 0 // : 1

x^-1 <= 0/1

x^-1 <= 0

1/(x^1) <= 0

x <> 0

1/(x^1) <= 0 // * x^2

(x^2)/(x^1) <= 0

x^1 <= 0

x <= 0

x in (-oo:0)

2*x^3 <= 0

2*x^3 <= 0

2*x^3 <= 0

2*x^3 <= 0 // : 2

x^3 <= 0/2

x^3 <= 0

x^3 <= 0 // ^ 1/3

x <= 0

x in (-oo:0>

x in (0:+oo)

ln(1/x)+ln(2*x^3) = ln(8) // - ln(8)

ln(1/x)+ln(2*x^3)-ln(8) = 0

ln(1*(1/x))+ln(2*x^3)-ln(8) = 0

ln(1*2*(1/x)*x^3)-ln(8) = 0

ln(1*2*(1/x)*x^3)+ln(1/8) = 0

ln(1*2*(1/x)*x^3)+ln(1/8) = 0 // - ln(1/8)

ln(1*2*(1/x)*x^3) = -ln(1/8)

1*2*(1/x)*x^3 = 1/1/8

1*2*(1/x)*x^3-(1/1/8) = 0

2*x^2 = 8 // : 2

x^2 = 4

x^2 = 4 // ^ 1/2

abs(x) = 2

x = 2 or x = -2

x in { -2}

x = 2

See similar equations:

| 6^4/4^3/3^6 | | 6=2+y | | 1-x=13 | | -5=5+2v | | -16=-8w+3(w+8) | | y=-1/6x+7 | | 9x+9-9=2 | | 4v+7=-17 | | -3(x-2)=-8x-44 | | F-9/-3=11-f/5 | | 1/2x^2-32=0 | | (x^2)/4+3x-8=0 | | -12=2x-6 | | 3x+2x-8+4=36 | | -11=-8v+5(v-4) | | 4x-2(x+2)=-8 | | -2+4x=-10 | | (X+2)+(2x+2)-2=4x+x | | -4u+24=-8(u-2) | | 3y+7/8=5 | | -15=3+3y | | 6X+4X+20=100 | | 2x+5(x-4)=1 | | 31=4(u+7)-7u | | 26-5p-2p=15.50 | | (10z^2-250)/(4z^2-100) | | -9x-8(22/8+10/8x)=111 | | -4(y+1)=-7y+8 | | 4x^(3/2)+5=21 | | -6=4u+2 | | -32=3(x-8)-7x | | 8[x+7m]-3=-5 |

Equations solver categories